Bipolar meiotic spindle formation without chromatin

نویسندگان

  • Stéphane Brunet
  • Zbigniew Polanski
  • Marie-Hélène Verlhac
  • Jacek Z. Kubiak
  • Bernard Maro
چکیده

Establishing a bipolar spindle is an early event of mitosis or meiosis. In somatic cells, the bipolarity of the spindle is predetermined by the presence of two centrosomes in prophase. Interactions between the microtubules nucleated by centrosomes and the chromosomal kinetochores enable the formation of the spindle. Non-specific chromatin is sufficient, however, to promote spindle assembly in Xenopus cell-free extracts that contain centrosomes [1,2]. The mouse oocyte represents an excellent model system in which to study the mechanism of meiotic spindle formation because of its size, transparency and slow development. These cells have no centrioles, and their multiple microtubule-organizing centers (MTOCs) are composed of foci of pericentriolar material [3,4]. The bipolarity of the meiotic spindle emerges from the reorganization of these randomly distributed MTOCs [4]. Regardless of the mechanisms involved in this reorganization, the chromosomes seem to have a major role during spindle formation in promoting microtubule polymerization and directing the appropriate rearrangement of MTOCs to form the two poles [5]. Here, we examined spindle formation in chromosome-free mouse oocyte fragments. We found that a bipolar spindle can form in vivo in the absence of any chromatin due to the establishment of interactions between microtubule asters that are progressively stabilized by an increase in the number of microtubules involved, demonstrating that spindle formation is an intrinsic property of the microtubule network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetochore-Independent Chromosome Poleward Movement during Anaphase of Meiosis II in Mouse Eggs

Kinetochores are considered to be the key structures that physically connect spindle microtubules to the chromosomes and play an important role in chromosome segregation during mitosis. Due to different mechanisms of spindle assembly between centrosome-containing mitotic cells and acentrosomal meiotic oocytes, it is unclear how a meiotic spindle generates the poleward forces to drive two rounds...

متن کامل

Augmin promotes meiotic spindle formation and bipolarity in Xenopus egg extracts.

Female meiotic spindles in many organisms form in the absence of centrosomes, the organelle typically associated with microtubule (MT) nucleation. Previous studies have proposed that these meiotic spindles arise from RanGTP-mediated MT nucleation in the vicinity of chromatin; however, whether this process is sufficient for spindle formation is unknown. Here, we investigated whether a recently p...

متن کامل

Maize meiotic spindles assemble around chromatin and do not require paired chromosomes.

To understand how the meiotic spindle is formed and maintained in higher plants, we studied the organization of microtubule arrays in wild-type maize meiocytes and three maize meiotic mutants, desynaptic1 (dsy1), desynaptic2 (dsy2), and absence of first division (afd). All three meiotic mutations have abnormal chromosome pairing and produce univalents by diakinesis. Using these three mutants, w...

متن کامل

Human Sperm Aster Formation and Chromatin Configuration in Rabbit Oocytes Following Intracytoplasmic Sperm Injection Using a Piezo-Micromanipulator

In human fertilization, the sperm centrosome nucleates a radial array of microtubules called the sperm aster. The sperm aster is responsible for apposition of male and female pronuclei, and later gives rise to the first meiotic spindle. The objective of this study was to determine microtubule assembly and chromatin configuration in rabbit oocytes following intracytoplasmic injection with human ...

متن کامل

Sperm Chromatin-Induced Ectopic Polar Body Extrusion in Mouse Eggs after ICSI and Delayed Egg Activation

Meiotic chromosomes in an oocyte are not only a maternal genome carrier but also provide a positional signal to induce cortical polarization and define asymmetric meiotic division of the oocyte, resulting in polar body extrusion and haploidization of the maternal genome. The meiotic chromosomes play dual function in determination of meiosis: 1) organizing a bipolar spindle formation and 2) indu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 8  شماره 

صفحات  -

تاریخ انتشار 1998